CCE Inlet Wind Tunnel Experiments

Combined Cycle Engine (CCE) Mode Transition Fundamental Aeronautics – Hypersonic Project

Thomas J. Stueber
NASA Glenn Research Center
Cleveland, Ohio

CCE-LIMX Model Features

Tunnel Floor

CCE-LIMX Model Features

Tunnel Floor

One of Four Bypass Doors

CCE Inlet Wind Tunnel Experiments

- CCE-LIMX hardware testing is conducted in the following four phases:
 - Inlet characterization and performance testing Phase 1
 - Static inlet operating points
 - Mode transition schedule
 - System identification Phase 2
 - Step response analysis
 - Sinusoidal sweep response analysis
 - Phase 3 Controls testing
 - Disturbance rejection testing
 - Controlled mode transition
 - Phase 4 Propulsion system testing
 - Turbine engine for LSFP
 - Dual-mode combustor for HSFP

Phase 1: Inlet Characterization and Performance Testing

Phase 1: Inlet Characterization and Performance Testing

Phase I: Inlet Characterization and **Performance Testing**

Phase I: Inlet Characterization and Performance Testing

Phase I: Inlet Characterization and Performance Testing

Controlling The CCE-LIMX

Tunnel floor

Design a Controller

Design a Controller

First, Design the Model

Process assumptions:

Sufficient control design simulation can be captured in a linear computational autoregressive control model.

Autoregressive model:

$$y(k+1) = a_0y(k) + a_1y(k-1) + ... + a_ny(k-n) + b_0u(k) + b_1u(k-1) + ... + b_nu(k-n)$$

Stimulate the Process

Stimulate the Process

GNC Phase 2 Accomplishments

- Experiment data is ITAR restricted
- Test matrix status Phase 2 Mach 4
 - 642 Experiments identified, ~89 hrs
 - Main (LST1 and HST1) schedule—506 experiments, ~49 hrs
 - First alternate (LST1 and HST2) schedule—68 experiments, ~20 hrs
 - Second alternate (LST2 and HST2) schedule—68 experiments, ~20 hrs
 - Reduced Matix—393 Experiments selected, ~29 hrs
 - Main schedule—378 experiments completed, 38.25 hrs
 - Alternates—0 experiments completed
 - Experiments:
 - Step, Sinusoidal Sweep, Sustained, Sinusoid
 - Staircase, Transient Stability Index (Tsi),
 - Unstart, Buzz, Restart
- Test window: 8/29/2011 10/19/2011
- 11 run nights (data collection)

GNC Phase 2 Accomplishments

Experiment data is (ITAR) estricted in Arms Regulation

International Traffic

- Test matrix status Phase 2 Mach 4
 - 642 Experiments identified, ~89 hrs
 High Speed flow patth Thank
 - Main (LST1 and HST1) schedule—506 experiments, ~49 hrs
 - First alternate (LST1 and HST2) schedule—68 experiments, ~20 hrs
 - Second alternate (LST2 and HST2) schedule—68 experiments, ~20 hrs
 - Reduced Matix—393 Experiments selected, ~29 hrs
 - Main schedule—378 experiments completed, 38.25 hrs
 - Alternates—0 experiments completed
 - Experiments:
 - Sustained, Sinusoid Step, Sinusoidal Sweep,
 - Staircase, Transient Stability Index (Tsi),
 - Buzz, Restart Unstart,
- Test window: 8/29/2011 10/19/2011
- 11 run nights (data collection)

- Calibrations in parallel with 10- x 10-foot facility calibration operations.
- Control transfer from facility to SysID Rack and back
 - Small changes in actuator positions due to discrepancy in interpreted actuator positions—insignificant.
 - We had exposure to feedback signals in EU,
 - Better to match voltage signals applied to the controller.
 - Verified SysID Rack controllability prior to facility pump down
 - Verified SysID Rack data acquisition performance while facility pump down.
- Data acquisition and experiment control performed flawlessly

Instrument Rack Designed to Conduct System Identification Experiments SysID Rack Performance

- Calibrations in parallel with 10- x 10-foot facility calibration operations.
- Control transfer from facility to SysID Rack and back
 - Small changes in actuator positions due to discrepancy in interpreted actuator positions—insignificant.
 - We had exposure to feedback signals in EU,
 - Better to match voltage signals applied to the controller.
 - Verified SysID Rack controllability prior to facility pump down
 - Verified SysID Rack data acquisition performance while facility pump down.
- Data acquisition and experiment control performed flawlessly

- Calibrations in parallel with 10- x 10-joot facility calibration operations. GRC 10- x 10-foot SWT
- Control transfer from facility to SysID Rack and back
 - Small changes in actuator positions due to discrepancy in interpreted actuator positions—insignificant.
 - We had exposure to feedback signals in EU,
 - Better to match voltage signals applied to the controller.
 - Verified SysID Rack controllability prior to facility pump down
 - Verified SysID Rack data acquisition performance while facility pump down.
- Data acquisition and experiment control performed flawlessly

- Calibrations in parallel with 10- x 10-foot facility calibration operations.
- Control transfer from facility to SysID Rack and back
 - Small changes in actuator positions due to discrepancy in interpreted actuator positions—insignificant.
 - We had exposure to feedback signals in EU,
 - Better to match voltage signals applied to the controller.
 - Verified SysID Rack controllability prior to facility pump down
 - Verified SysID Rack data acquisition performance while facility pump down.
- Data acquisition and experiment control performed flawlessly

- Host Laptop II choked on data transfer to host from target—about 4 events
 - Control transfer back to facility
 - Reboot SysID Rack (about 25 min turn around).
 - Enabled a few Phase I type experiments during down time
 - Issue resolved by replacing Host II with Host I.
- Data saved in multiple locations
- Data reduction computer and tools worked flawlessly

Hypersonic TBCC Controls Team **Future Paths**

- Continue CCE Phase 2 testing
- Reduce Phase 2 data to control design models (CDMs)
- Compare physics based computational models against CDMs.
- Design control algorithm for maintaining desired pressure recovery
- CCE-LIMX Phase 3 and 4 testing (if funding becomes available)
 - Test controller on physics based computational models
 - Buildup SysID Rack to support Phase 3 experiments
- Investigate control applications for dual-mode scramjet engine flow paths.

Summary

- Well underway to meeting Phase 1 and 2 objectives:
 - Completed:
 - A control system, hardware and software, was designed to demonstrate inlet mode transition.
 - System identification experiments were designed to study the dynamic issues associated with inlet mode transition.
 - A control system was designed, hardware and software, to conduct the system identification experiments and record the experiment data.
 - System identification experiments at Mach 4 mode transition operating points.
 - Underway
 - Dynamic analysis of the system identification experiment data
 - frequency spectrum of interest for active control
 - Experiment based control design model (CDM) development
 - Preparing physics based models to simulate dynamics of inlet mode transition (validation).

Summary

- Well underway to meeting Phase 1 and 2 objectives:
 - Underway (continued):
 - Designing controllers based on:
 - experimental data
 - physics based computational models.
 - Testing controller algorithms on physics based computational models.

End of CCE Wind Tunnel Experiments

Discussion Guideline

Topic:

• Are we working on the right controls/diagnostics technologies w.r.t. project objectives?

• Do we have the right approach?

• Are we appropriately disseminating information on our efforts and the progress being made?

• Are there any other efforts ongoing that we can leverage?